Mathematical structures in logic Exercise class 1

Posets and (distributive) lattices

February 4, 2016
(1) Which of the following lattices are modular and which of them are distributive?
a)

b)

c)

d)

1)

(2) Suppose (L, \vee, \wedge) is a lattice. Recall that we defined a relation $a \leq b$ iff $a \wedge b=a$. Now define a relation \leq^{\prime} on L via $a \leq^{\prime} b$ iff $a \vee b=b$. Show that $\leq=\leq^{\prime}$.
(3) Show that every lattice satisfies:

$$
(x \wedge y) \vee(x \wedge z) \leq x \wedge(y \vee z)
$$

(4) Recall that in class we defined on a lattice $(L, \leq) a \wedge b:=\inf \{a, b\}$ and $a \vee b:=\sup \{a, b\}$. Show that these operations satisfy

- $x \vee(y \vee z)=(x \vee y) \vee z$
- $x \wedge(y \wedge z)=(x \wedge y) \wedge z$
(5) Recall that if (X, \leq) is a partial order then the covering relation \prec on X is defined as

$$
x \prec y \Longleftrightarrow x<y \& \forall z \in X(x<z \leq y \Longrightarrow z=y)
$$

Given two partial orders $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ we define a relation \leq on $P \times Q$ via $(p, q) \leq\left(p^{\prime}, q^{\prime}\right)$ iff $p \leq_{P} p^{\prime}$ and $q \leq_{Q} q^{\prime}$.

- Prove that \leq is a partial order on $P \times Q$.
- Prove that $(p, q) \prec\left(p^{\prime}, q^{\prime}\right)$ iff

$$
\left(p=p^{\prime} \text { and } q \prec_{Q} q^{\prime}\right) \text { or }\left(p \prec_{P} p^{\prime} \text { and } q=q^{\prime}\right)
$$

(6) Funny examples:

- Give an example of a lattice (L, \leq) such that no infinite subset $X \subseteq L$ has a least upper bound.
- Consider the poset (\mathbb{N}, \leq). Is this a lattice? Is it complete?
- Find an example of a lattice (L, \leq) that contains a subset $A \subseteq L$ such that $\inf A$ and $\sup A$ exist but $\sup A \neq \inf A$ and $\sup A \leq \inf A$.
- Find an example of a poset where $\inf \emptyset$ does not exist.

Additional exercises

- Find all posets with 4 elements. (Hint: There are 16)
- Let $f:(L, \leq) \rightarrow\left(L^{\prime}, \leq^{\prime}\right)$ and $g:\left(L^{\prime}, \leq^{\prime}\right) \rightarrow(L, \leq)$ be order-preserving maps between the lattices (L, \leq) and $\left(L^{\prime}, \leq^{\prime}\right)$ such that $g(f(x))=x$ for all $x \in L$ and $f(g(y))=y$ for all $y \in L^{\prime}$. Show that f and g establish a lattice isomorphism between L and L^{\prime}.
- Prove that the absorption laws imply $a \wedge a=a$ and $a \vee a=a$.

