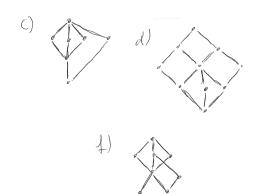
Mathematical structures in logic Exercise class 1

Posets and (distributive) lattices

February 4, 2016

(1) Which of the following lattices are modular and which of them are distributive?



(2) Suppose (L, \vee, \wedge) is a lattice. Recall that we defined a relation $a \leq b$ iff $a \wedge b = a$. Now define a relation \leq' on L via $a \leq' b$ iff $a \vee b = b$. Show that $\leq = \leq'$.

(3) Show that every lattice satisfies:

$$(x \land y) \lor (x \land z) \le x \land (y \lor z)$$

- (4) Recall that in class we defined on a lattice (L, \leq) $a \wedge b := \inf\{a, b\}$ and $a \vee b := \sup\{a, b\}$. Show that these operations satisfy
 - $x \lor (y \lor z) = (x \lor y) \lor z$
 - $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- (5) Recall that if (X, \leq) is a partial order then the *covering relation* \prec on X is defined as

$$x \prec y \iff x < y \& \forall z \in X (x < z \le y \implies z = y).$$

Given two partial orders (P, \leq_P) and (Q, \leq_Q) we define a relation \leq on $P \times Q$ via $(p, q) \leq (p', q')$ iff $p \leq_P p'$ and $q \leq_Q q'$.

- Prove that \leq is a partial order on $P \times Q$.
- Prove that $(p,q) \prec (p',q')$ iff

$$(p = p' \text{ and } q \prec_Q q') \text{ or } (p \prec_P p' \text{ and } q = q')$$

- (6) Funny examples:
 - Give an example of a lattice (L, \leq) such that no infinite subset $X \subseteq L$ has a least upper bound.
 - Consider the poset (\mathbb{N}, \leq) . Is this a lattice? Is it complete?
 - Find an example of a lattice (L, \leq) that contains a subset $A \subseteq L$ such that $\inf A$ and $\sup A$ exist but $\sup A \neq \inf A$ and $\sup A \leq \inf A$.
 - Find an example of a poset where $\inf \emptyset$ does not exist.

Additional exercises

- Find all posets with 4 elements. (Hint: There are 16)
- Let $f:(L,\leq) \to (L',\leq')$ and $g:(L',\leq') \to (L,\leq)$ be order-preserving maps between the lattices (L,\leq) and (L',\leq') such that g(f(x))=x for all $x\in L$ and f(g(y))=y for all $y\in L'$. Show that f and g establish a lattice isomorphism between L and L'.
- Prove that the absorption laws imply $a \wedge a = a$ and $a \vee a = a$.